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In this paper, we consider an approximation problem which arose in optimal
control theory. We seek conditions on a compact subset K of Euclidean n-space
such that every continuous vector field on K may be uniformly approximated
(on K) by vector fields with strictly positive integrating factors. We prove that
such approximation is possible for all K in a particular subclass of the compact
sets with topological dimension less than or equal to 1.

INTRODUCTION

The following problem arose in connection with a problem of optimal
control in the Lagrange form, where the results of this paper were used to
prove existence theorems (see [2]). Let K be a compact subset of a Euclidean
space En, and let C(K)n be the Banach space of continuous vector fields
hex) = (hI, ..., bn) (with n real components) defined on K with

II b II = sup Ib(x)I = sup [bl(x)2 + ... + bn(X)2]1/2.
xeK xeK

We letF(K) be the set of vector fields g, defined in an open neighborhood ofK,
which are of the form g(x) = c(x) VG(x) for some continuous, strictly
positive function c(x) and some continuously differentiable function G(x).
Here VG(x) is the gradient of Gat x. Thus, the set F(K) consists of vector
fields defined in a neighborhood of K which have strictly positive integrating
factors. The set of vector functions F(K) induces a subset of C(K)n by
restriction, and we denote by F(K) the norm closure of this set in C(K)n.
We note that any elementg ofF(K) is gradient-like, for, ifg(x) = c(x) VG(x),
then the inner product, g(x) . VG(x), is strictly positive for aU x such that
g(x) =F O. Thus, we say that the elements of F(K) are weakly gradient-like.
We now pose the problem.

Given a vector field b in C(K)n, under what conditions on b (and K) is b
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weakly gradient-like? As it stands, this problem has been too general to
admit satisfactory solution. Rather, a restricted problem has proved more
susceptible to attack. Namely, for what compact sets K does F(K) = C(K)n?
This is the approach we take in this paper. .

In Section 1, we define a subset G(K) ofF(K) which is useful in the approxi­
mation problem under consideration, and we discuss the relations between
G(K), F(K) and C(K)n. Section 2 is devoted to the case n = 2, i.e., we seek
conditions on compact subsets K of the plane so that F(K) = C(K)2. In
Section 3, we review some definitions from topological dimension theory,
and we use these concepts in our study of the case n > 2.

1

We define the subset G(K) of F(K) to be the set of all continuous vector
functions g, defined in an open neighborhood of K, which are of the form
g(x) = VG(x) for some continuously differentiable function G(x). The set
G(K) defines a subset of F(K) by restriction to K, and we define G(K) to be
the norm closure of this set. Thus, G(K) C F(K) C C(K)n for any compact
set K in En. The advantage in working with the set G(K) is that it is a linear
subspace of C(K)n (since G(K) is closed under multiplication by scalars
and under addition), while, in general, F(K) is not closed under addition. In
fact, we have the following.

THEOREM. If K is such that F(K) is a linear subspace of C(K)n, then
F(K) = C(K)n.

Proof Let v = (vl , , vn) be a Borel measure on Kwith n real components
so that if g = (gl , , gn) is an element of F(K), then IK g . dv =
L:~l IKgi . dVi = O. That is, dv annihilates the subspace F(K). By definition,
for any function c(x), continuous and strictly positive in a neighborhood of K,
and any function G, continuously differentiable in a neighborhood of K,
cVG EF(K). We consider the function G to be fixed (but arbitrary). Because
F(K) is closed, for any continuous, nonnegative function c(x) defined on K,
c(x) VG(x) lies inF(K). Letf(x) be any continuous, real-valued function on K.
Let f+(x) = max{O,j(x)}, and let f-(x) = min{O,j(x)}. Then f+(x) ~ 0
andf-(x) ~ 0 for all x in K. Furthermore,j(x) = f+(x) + f-(x) so that

f(x) VG(x) = f+(x) VG(x) + f-(x) VG(x),

for all x in K. Therefore, if H(x) = -G(x), then for all x in K,

f(x) VG(x) = f+(x) VG(x) + [-f-(x)] VH(x).
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Since each element of the sum is in F(K), and F(K) is assumed to be closed
under addition, f(x) V'G(x) is in F(K). Therefore,

f f(x) V'G(x) . dv(x) = 0,
K

for aU continuous, real-valued functions / defined on K. We let dp, be the
real measure VG· dv = L~~I (OG/OXi) dVi' Then, we have shown that
IKf(x) dp,(x) = 0 for all continuous, real-valued functions/on K. It follows
that dp, = VG . dv is the zero measure for all continuously differentiable
real-valued functions G. Let b = (bl ,.,', bn) be an arbitrary fixed vector in En
and define G(x) = b . x = bIxI + ... +bnxn for all x in En. Then, VG(x) = b
for all x, and b . dv is the zero measure. That is,

o = f b· dv = b . v(K'),
K'

for all Borel measurable subsets K' of K. Since b is arbitrary, v(K') = 0 for all
Borel measurable subsets K' of K. Therefore, v is the zero measure. Since
the only Borel measure on K which annihilates F(K) is the zero measure, and
F(K) is a linear subspace of C(K)n, F(K) must equal C(K)n, and the theorem
is proved.

This result is not as useful as it is interesting, since demonstrating that F(K)
is linear seems to be as difficult as verifying that F(K) = C(K)n by more direct
means.

We conclude this section with an example of a compact set KI in E2 for
which G(KI) eft F(KI) eft C(KI )2, and an example of a compact set K2 in En
for which G(K2) = F(K2) = C(K2)n.

EXAMPLE 1.1. We denote by (x, y) the points in E2 and we define K to
be the set of all (x, y) in E2 such that x2 + y2 = 1. For (x, y) in KI , we define
g(x, y) = (-y, x) so that g E C(K)2. We will show that g is not an element
of G(KI) or F(KI). We define the bounded linear functional T on elements
h = (hI' h2) of C(KIF by setting

f
27T

T(h) = [-hl(cos t, sin t) sin t -+- h2(cos t, sin t) cos t] dt,
o

so that T(h) is the counter-clockwise path integral of h along K I . Thus,
T(g) = 217. But T annihilates the elements of G(KI ), so g $ G(K1). Now,
suppose g is an element of F(KI ). Then, for each n = 1,2'00" there is a
continuous, strictly positive function cn(x, y) and a continuously differentiable
function Gn(x, y), both defined in a neighborhood of K1 , such that

Ig(x, y) - cn(x, y) VGn(x, y)1 < lin,
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for all (x, y) in Kl . Since j g(x, y)j = 1 for all (x, y) in Kl , for n ~ 2,
VGn(x, y) =1= (0,0) for all (x, y) in Kl . In particular, we look at n = 2.
Let y = max C2(X, y), the maximum taken for (x, y) in Kl . Then, by the
Schwarz inequality,

j c2(x, y) VG2(x, y) . g(x, y) - Ig(x, y)1 2 I < t,
for all (x, y) in Kl • Since Ig(x, y)1 2 = 1, we have that

c2(x, y) VG2(x, y) . g(x, y) > t,
for all (x, y). Therefore,

VG2(x, y) . g(x, y) > (Ij2C2(X, y)) ~ Ij2y,

for all (x, y) in Kl . We now note that

f
211

T(VG2) = VG2(cos t, sin t) . g(cos t, sin t) dt ~ TTjy > 0,
o

which contradicts the fact that T annihilates elements of G(Kl ). Therefore,
the open ball of radius t in C(Kl)2, centered at g, contains no elements of
F(Kl), so F(Kl) =1= C(Kl)2. From the theorem proved above, it is clear that
G(Kl) =1= F(Kl), since F(Kl) cannot be a linear subspace of C(Kl)2. Thus,
G(KJ =1= F(Kl) =1= C(Kl)2.

EXAMPLE 1.2. Let K2 be the compact subset of En defined by

K2 = {(Xl' X2 ,... , xn) I 0 :'S; Xl :'S; 1, X2 = ... = Xn = O}.

We will show that G(Kz) = C(Kz)n, and hence that F(Kz) = C(K2)n.
Let g(xl ,..., xn) = (gl(Xl ,... , xn), ... , gn(Xl ,..., xn)) be an element of C(K2)n
such that each functiongz ,..•, gn is continuously differentiable. Such functions
are dense in C(K2)n. Actually, each function gi depends only on the variable
Xl' so we write the function g as g(Xl) = (gl(Xl)"'" gn(Xl))' Since gl is
continuous, it is Riemann integrable and we may define Gl(Xl) = hI gl(t) dt.
We define H(xl ,... , xn) by setting

n

H(xl ,... , xn) = Gl(Xl) + L: xiglxl)'
i=2

Then, H has continuous partial derivatives and

HreiXt , 0,... , 0) = gi(XJ,

for i = 1,2,..., n and for 0 :::;; Xl :::;; 1. Thus, each such element g of C(KJn
is an element of G(K2). Since the functions with continuous derivatives are
dense in C(K2)n, G(K2) = C(K2)n.
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The difference between the sets KI and K 2 illustrates the underlying theme
of this paper. We will consider (one dimensional) compact sets K in En
which, in an appropriate sense, have the topological properties of K 2 and
avoid those of KI .

2

In this section, we study the case n = 2. That is, we investigate conditions
on a compact set Kin E2 such that G(K) = C(K)2. For the purposes of this
section only, we regard E2 as the complex plane: £2 = {x + iy I x and y
lie in W}, where i2 = -1. For K a compact subset of E2, we define CCK) to
be the space of continuous, complex-valued functions defined on K. CCK) is
a Banach space under the norm defined for f = fl + if2 by

Ilflloo = sup 1f(z) 1= sup L!I(z)2 +h(Z)2]1/2.
ZEK ZEK

The subspace P(K) of C(K) is defined to be the norm closure in CCK) of the
polynomials on K. That is, P(K) is generated by functions p(z) which are
polynomials in the complex variable z. We will need the following theorem,
which is proved in ([1], p. 48).

THEOREM 2.1 (Mergelyan's Theorem). Let K be a compact subset of E2
whose complement is connected. Iff E CCK) and f is analytic on the interior
ofK, thenfE P(K).

It is clear that C(K)2 and CCK) are isometrically isomorphic. We will use
this fact in conjunction with Theorem 2.1 to prove the main theorem of this
section, Theorem 2.2.

THEOREM 2.2. If K is a compact subset of E2 which is nowhere dense and
has connected complement in E2, then G(K) = C(K)2.

Proof For f = (II ,h) in C(K)2, we define U(f) = h - if;, so that
U(f) E CCK). It is clear that V is an isometry from C(K)2 onto CCK). Let
p(z) be a polynomial in the complex variable z = x + iy, defined in the whole
complex plane, and hence in a neighborhood of K. Then, there are real
polynomials PI andp2 in the two real variables x and y such that p(x + iy) =

PI(X, y) + ipix, y). By the Cauchy-Riemann equations,

oPI/oy = -OP2/0X,

for all real x, y. Thus, by Green's theorem, the differential PI dx - P2 dy is
exact on the entire plane. It follows that there is a continuously differentiable
function P = P(x, y) such that oP/ox = PI and oP/oy = -P2' We have
therefore shown that V-I(p) E G(K) for every complex polynomial p. Since
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U-l is continuous and maps a dense subset of P(K) into G(K), we conclude
that U-l(P(K» C G(K). We now use our assumptions about K. Since K is
nowhere dense, K has empty interior, and every function in C(K) is analytic
on the (empty) interior of K. By Theorem 2.1, then, since K has connected
complement, iff EO C(K), we have thatfEO P(K), i.e., P(K) = C(K). Therefore,
under our hypotheses on K, U-l(C(K» C G(K). But, U is an isometry of C(K)2
onto C(K), so U-l(C(K» = C(K)2. Thus, C(K)2 C G(K) C C(K)2, and the
theorem follows.

In the next section, we attempt to imitate these results when K is a compact
subset of En, n > 2. However, neither of the hypotheses stated in Theorem 2.2
on the subset K of £2 generalizes verbatim to the case n > 2. If K is a compact
subset of En which is nowhere dense in En, then it has no interior in En, but
for n > 2, K could have "dimension" larger than or equal to 2. For example,
if K = {(x, y, z) EO £2 I x 2 + y2 ~ 1, z = O}, then K is nowhere dense in E3,
but, as in Example 1.1, it may be shown that G(K) =F F(K) =F C(K)3. Similarly,
the "connected complement" condition is not sufficient for n > 2. For
example, the set K = {(x, y, z) EO E3 [ x 2 + y2 = 1, Z = O} has connected
complement in E3, but, as in Example 1.1, G(K) =F F(K) =F C(K)3. Thus,
in Section 3, we consider the appropriate topological generalizations for n > 2.

3

We will need some of the concepts of topological dimension theory, and
for these, we draw on [3]. Let Kbe a compact subset of En and let {U1 , ... , Uk}
be a covering of K by open sets. The order of the covering {U1 , ... , Uk} is
defined to be the largest integer N such that there are N + 1 members of
the covering whose intersection is nonempty. If {VI'"'' Vm } is a covering
of K by open sets, we say that {VI'"'' Vm } is a refinement of {U1 , ... , Uk} if
for each Vj , j = 1,2,... , m, there is an i, 1 ~ i ~ k, such that Vj CUi'
(See [3, pp. 52-53].) We may define the dimension of K, dim K, as follows.
We will say that dim K ~ N if every covering of K by finitely many open
sets has a refinement of order less than or equal to N. In particular, the empty
set is the only set with dimension -1. Further, if dim K = 0, every covering of
K by finitely many open sets has a refinement whose elements are pairwise
disjoint. We thus have the following theorem.

THEOREM 3.1. If K is a nonempty compact subset of En such that
dim K = 0, then G(K) = C(K)n.

Proof Let g be an arbitrary element of C(K)n and let e > 0 be arbitrary.
For each X o in K, there is an open neighborhood U = U(xo) of X o such that

I g(x) - g(xo)1 < e/2,
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for all x in K n U(xo)' Since {U(X)}XEK is a covering of K by open sets, the
family {U(X)}XEK has a Lebesgue number o. Thus, if V is an open subset of
En of diameter less than 0 and if V n K is nonempty, then V C U(x) for some
x in K. Since K is compact, K is totally bounded, so there is a covering of K
by finitely many open sets {VI, ... , Vm } such that each Vi, 1 ~ i ~ m, has
diameter less than o. Since dim K = 0, there is a refinement {UI , ... ,

of {VI"'" Vm } such that Ui n Uj = c/J ifi =1= j. By the definition ofthefamily
{UI , ... , UN} the diameter of Ui is less than 0 for each i. For i = 1,2,... , N,
let Xi be any element of K n Ui . Then, Ui C U(x') for some x' in K, so that,
for any x in K n Ui ,

i g(x) - g(Xi) I ~ i g(x) - g(x') [ + [g(x') - g(Xi)! < E.

We let bi = g(Xi) E En for i = 1,2,... , N, and we define a real-valued function
G on U = U~I Ui as follows. Let G(x) = bi . x for all x in Ui . Since the
sets {UI , ... , UN} are pairwise disjoint, G is well-defined. Also, VG(x) = bi
for all x in Ui . It follows that G is continuously differentiable on U and,
for x in K n Ui ,

Ig(x) - VG(x)! = Ig(x) - hi i < E.

Therefore, I g(x) - VG(x) I < E for all x in K. Since E > 0 was arbitrary,
g E G(K). Since g E C(K)n was arbitrary, G(K) = C(K)n and Theorem 3.1
is proved.

Our main result of the section concerns a subclass of the compact sets K
satisfying dim K ~ 1.

We note that in Section 2, we have already proved a theorem which can
be used to derive a statement of this type. For, by [3, p. 41, Theorem IV 1],
dim En = n for all n, and, if K C En, then, by [3, p. 44, Theorem IV
dim K = n if and only if K contains a nonempty subset which is open in En.
In particular, for n = 2, K C E2 is nowhere dense in £2 if and only if
dim K ~ 1. Thus, we may restate Theorem 2.2 to say: if K is a compact
subset of E2 such that dim K ~ I and K has connected complement in E2,
then G(K) = C(K)2. We will prove a similar, though weaker statement for
KCEn, n > 2.

We now state some definitions. We will assume that BI , ... , Bk are open
balls in the Euclidean space En with centers Xl, ... , Xk, respectively. If
Bi n Bj # c/J for i =1= j, we denote by Lij the undirected line segment joining
Xi and Xj . Thus, Lij = L ji . If Bi n Bj is empty, we let L ij = L ji = c/J, and
we set Lii = {Xi} for each i. We define a point set L(Bl , ... , Blc) by setting

k

L(BI , ... , Bk ) = U Lij.
i,j=l
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We note that L(B1 , ••• , Bk ) is a finite union of piecewise linear curves and that
k

L(B1 , ••• , Bk ) has the same number of connected components as U;=l B; .
We will say that the collection {B1 , ... , Bk } forms a simple chain if

L(B1 , ... , Bk ) contains no simple closed curve. Let K be a compact subset
of En. We will say that K has the simple chain covering property if for every
€ > 0, there is a covering of K by open balls B1 , ... , Bk in En, each of radius
less than €, such that the collection {B1 , ... , B k } forms a simple chain. We
note that if Khas the simple chain covering property, then dim K :(: 1, since
every covering by open balls {B1 , ... , Bk } which form a simple chain, has order
less than or equal to 1. Furthermore, if a set K has the simple chain covering
property, then clearly K contains no simple closed curve. We may prove the
following theorem.

THEOREM 3.2. If K is a compact subset of En having the simple chain
covering property, thenF(K) = C(K)n.

Proof Let g = (gl, g2, ... , gn) be an element of C(K)n and let € > °be
given. For each X o in K, there is an open n-ball B(xo) centered at X o such that
Ig(xo) - g(x)! < e/4 for x in K n B(xo). The open balls B(x), for x in K,
cover the set K. Since K is compact, the covering {B(X)}",eK has a Lebesgue
number o. Let B1 , ... , Bk be a covering of K by open balls in En of radius less
than 0/2, such that {B1 , ... , Bk } forms a simple chain. Thus, for each B;,
there is an element y; of K such that B; C B(y;). Let b; = g(y;) and
write b; = (bl, b;2, ... , bin). We let r; be the radius of Bi and we write
c; = (cl, C;2, ... , c;n) for the center of B;, i = 1,2,... , k. We now note that
since K is compact, there is a positive distance 0' between K and O(U~=l BJ.
In particular, since {B1 , ... , Bk } forms a simple chain, U;"Fj (oB; n oBj) C
O(U:=l B;), and if W is a 0' /2-neighborhood of U;"Fj (OBi n oBj), then
K n clW = 4>. We define B to be the set U~=l Bi\clW, so that B is an open
neighborhood of K in En. We will define a vector functionf = (P,j2, ...',jn)
on B such that! g(x) - I (x) I < € for all x in K, and such thatfEF(K). That
is, we will find a continuous, strictly positive function hex) on B and a
real-valued, continuously differentiable function G(x) on B such that
I(x) = hex) VG(x) for all x in B. The vector function f will be defined
inductively. In fact, since it is to be constant in each of the sets BNU;"Fj B;),
the induction step will be obvious when the construction is verified in the
sets Bi n Bj , for i =1= j. Since the family {B1 , ... , Bk } forms a simple chain
and hence has order less than or equal to 1, we need never consider the inter­
sections of 3 or more distinct elements of the family.

For x in BNUi"Fj Biu clW), we define I(x) = bj = g(Yj). Here, without
loss of generality, we assume that if Bi n Bj =1= 4>, i =1= j, then bj is not
perpendicular to the line connecting the centers c; and Cj • (If this not the
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case, we may perturb hj by adding a vector of length less than e/4 so that the
above is satisfied. The remaining statements then proceed without difficulty
if we consider that Ihj - g(y;)1 < e/4 for each j.) Thus, for each x in
BNUi","; Bi V clW),

If(x) - g(x)I ~ I h; - g(x)! ~ i h; - g(y;) I + Ig(y;) - g(X)I < €/2.

Now, suppose thatf(x) is extended to all of B in such a way that for x lying
in Bi n B; , for i =1= j, then f(x) is a convex combination of hi and h; . We
then have the following. For x in Bi n B; n K, there is a ii, 0 ~ A~ 1, such
thatf(x) = Ahi + (1 - A) h; . Thus,

If(x) - g(x)I ~ AIhi - g(Yi)1 + AIg(Yi) - g(x)1

+ (1 - A)I h; - g(Y;)1 + (1 - iI)1 g(y;) - g(x)l,

which is less than € since each absolute value is bounded by €/4. We will
therefore show how to definejin the sets B i n B;, i =1= j, so thatjis a convex
combination of hi and h; .

We assume, therefore, that Bi n B; is non-empty, for some i =1= j. Without
loss of generality, we may assume that the centers Ci and C; of Bi and B i

both lie along the xl-axis, and, in fact, we may assume that Ci = 0 while
C; = (a, 0, 0,... , 0) for some a > O. Thus, OBi noB; lies in a hyperplane
perpendicular to the xraxis, say {(Xl'"'' x n) I Xl = a'}, where 0 < a' < a.
Let a1 , a2 be positive numbers such that al < a' < a2 and such that: the
intersection of the hyperplane Xl = al and the set oBi lies in the open set
W; the intersection of the hyperplane Xl = a2 and the set OBi lies in the open
set W.

We note that neither of the vectors hi and h; are perpendicular to the x1­

axis (by assumption). If hi = h; , we may set hex) = 1 and f(x) = bi = h;
for all X in Bi V B; . We therefore assume that hi =1= b; .

Let hi and 5; be the vectors in EMI formed from hi, b; by setting
hi = (bi , b), 0; = (b; , b), where b is chosen to be any positive number large
enough so that Oi . 0; = (b)2 + L~l blbl > O. Since bi =1= h;, hi and 5;
are linearly independent. We define row vectors VI' V2 '00" Vn+! in En+1 as
follows. We let V3 , V4 '00" Vn+1 be n - 1 row vectors in En+! such that
bi , b; , V3 , ... , vn+! are linearly independent and such that Vk is perpendicular
to bi and b; for all k, 3 ~ k ~ n + 1. We let VI = 0,0,0'00.,0) and we note
that since VI . Di =1= 0 and VI . D; =1= 0, the family VI , '5; , V3 '00" Vn+! is linearly
independent. We define V2 = 0;. Thus, {VI' V2 , ••• , vn+!} forms a linearly
independent set of row vectors. Let M be the (n + 1) X (n + 1) matrix
whose kth row is Vk •

For d in E\ let L = {x = (Xl"'" X n+1) E En+! i Xl = d}. Then, we have
defined M so that M(Lo) is a subset of Lo • (When we write M(x) for some
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vector X in En+1, we have in mind that x is a column vector.) Since the rows
of M are linearly independent, M is invertible and M(Lo) = L o . We write
L d = (d, 0, ... , 0) + L o . Then, M(Ld ) = M(d, 0, 0, ... , 0) + L o so that L d is
parallel to M(Ld ). Note, however, that M(d, 0, ... , 0) = (d, d2 , , dn+l) for
some scalars d2,... , dn+l so that M(d, 0, ... , 0) is an element of (d, 0, , 0) + L o.
Thus, M(Ld) n L d is non-empty. It follows that M(Ld ) = L d for all din £1.

We define

P = M(5;) = (5; . VI' 5; . V2 , 5; . V3 , ... , 5; . Vn+l) = (PI ,P2, 0, 0,... , 0)

where we have constructed M so that P2 is positive. Similarly, we define
q = M(5j ) = (ql , q2 , 0, 0, ... , 0), where q2 is positive. Since 5i , 5j are
independent, so are P and q. We will define a vector-valued function Jon
En+l such that: J(x) E En+l for all x; J(XI ,... , Xn+l) = P for Xl ~ al ;

J (Xl"'" Xn+l) = q for Xl ~ a2 and J (Xl'"'' Xn+l) is a convex combination
of P and q for al < Xl < a2 . For al ~ Xl ~ a2 , we define

'\(XI) = (a2 - XI)f{(P2Iq2)(XI - al ) + (a2 - Xl)}'

Then, '\(al) = 1, '\(a2) = °and°~ '\(xl ) ~ 1for all Xl such that al ~ Xl ~ a2'
For al ~ Xl ~ a2 , we define J (Xl'"'' Xn+l) by setting

J(XI ,... , Xn+l) = '\(XI) P + (l - '\(XI)) q.

We define J by continuity and constancy outside the interval al ~ Xl ~ a2 .
We now define a real-valued function n(xI ,... , Xn+l) by setting

n(xI ,... , Xn+l) = (a2 - al )f{(P2Iq2)(XI - al ) + (a2 - Xl)},

for a1 ~ Xl ~ a2 . We set n(xI ,... , Xn+l) = 1 for Xl ~ al and n(xI ,... , Xn+l) =
q21p2 for Xl ~ a2 . Thus, n is continuous. Since n is monotone in the interval
al ~ Xl ~ a2 , it is easy to see that n takes on values between 1 and Q21p2 .
Therefore, n(xI ,... , Xn+l) > 0 for all Xl"'" Xn+l .

We consider the quotient (gl , g2 ,... , gn+l) = Jln. It is an easy computation
to verify that

at all points (Xl ,... , xn+l) in EMI. Therefore, there is a real-valued, con­
tinuously differentiable function G such that VG(x) = J (x)/n(x), or,
J (x) = n(x) VG(x) for all x in En+l.

For x in En+l, we define Go(x) = G(M-I(X)) and ho(x) = n(M-I(x)). Thus,
VGo(x) = M-I[VG(M-I(X))]. Since M(Ld ) = L d implies M-I(Ld ) = L d

for all real d, both hO(xI ,... , Xn+l) and VGO(xI ,..., Xn+l) are constant for
Xl ~ al and for Xl ~ a2 (as are nand VG). We will write X = (Xl'"'' xn)
and x = (x, Xn+l) = (Xl"'" Xn+l)' For Xl ~ al ,
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Since, for al ~ Xl ~.a2 , li(x) VVex) is a convex combination of p and q,
in the same interval, ho(x) VGo(x) is a convex combination of Oi and b; ,
Therefore, the (n + l)st component of hoVGo is constant and equal to b,
We may define a function G of n variables, then, by setting G(x) = Go(X, 0),
and, it is clear that if hex) = ho(x, 0), then hex) VG(x) is a convex combination
of bi and h; for al ~ Xl ~ a2 , Also, hex) V'G(x) = hi for Xl ~ 01 and
hex) VG(x) = b; for Xl ?: a2 , Finally, both hand VG are constant for
Xl ~ °1 , and for Xl ?: a2 '

For X in (Bi n B;)\clW, we define I(x) = hex) VG(x), From our earlier
demonstration, we have that I/(x) - g(x) [ < E for all X in K n (Bi n
The extensions ofj, hand G to all of B require merely an appropriate scaling
of h, Since {Bl ,.", B k } forms a simple chain, all three functions will be weU­
defined on extension and we have that

[/(x) - g(x) [ = [ hex) VG(x) - g(x) I < E for all X in K.

Therefore, since E > 0 was arbitrary, g is an element of F(K). Since
g E C(K)n was arbitrary, F(K) = C(K)n, and the theorem is proved.
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